3.3.49 \(\int \frac {1}{\sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^2} \, dx\) [249]

Optimal. Leaf size=116 \[ \frac {2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{7 a^2 d \sqrt {e \cos (c+d x)}}-\frac {2 \sqrt {e \cos (c+d x)}}{7 d e (a+a \sin (c+d x))^2}-\frac {2 \sqrt {e \cos (c+d x)}}{7 d e \left (a^2+a^2 \sin (c+d x)\right )} \]

[Out]

2/7*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)/a^2
/d/(e*cos(d*x+c))^(1/2)-2/7*(e*cos(d*x+c))^(1/2)/d/e/(a+a*sin(d*x+c))^2-2/7*(e*cos(d*x+c))^(1/2)/d/e/(a^2+a^2*
sin(d*x+c))

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {2760, 2762, 2721, 2720} \begin {gather*} -\frac {2 \sqrt {e \cos (c+d x)}}{7 d e \left (a^2 \sin (c+d x)+a^2\right )}+\frac {2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{7 a^2 d \sqrt {e \cos (c+d x)}}-\frac {2 \sqrt {e \cos (c+d x)}}{7 d e (a \sin (c+d x)+a)^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[e*Cos[c + d*x]]*(a + a*Sin[c + d*x])^2),x]

[Out]

(2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2])/(7*a^2*d*Sqrt[e*Cos[c + d*x]]) - (2*Sqrt[e*Cos[c + d*x]])/(7*
d*e*(a + a*Sin[c + d*x])^2) - (2*Sqrt[e*Cos[c + d*x]])/(7*d*e*(a^2 + a^2*Sin[c + d*x]))

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2760

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*C
os[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*(2*m + p + 1))), x] + Dist[(m + p + 1)/(a*(2*m + p + 1)),
Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^
2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] && IntegersQ[2*m, 2*p]

Rule 2762

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*((g*Cos[e
 + f*x])^(p + 1)/(a*f*g*(p - 1)*(a + b*Sin[e + f*x]))), x] + Dist[p/(a*(p - 1)), Int[(g*Cos[e + f*x])^p, x], x
] /; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] &&  !GeQ[p, 1] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^2} \, dx &=-\frac {2 \sqrt {e \cos (c+d x)}}{7 d e (a+a \sin (c+d x))^2}+\frac {3 \int \frac {1}{\sqrt {e \cos (c+d x)} (a+a \sin (c+d x))} \, dx}{7 a}\\ &=-\frac {2 \sqrt {e \cos (c+d x)}}{7 d e (a+a \sin (c+d x))^2}-\frac {2 \sqrt {e \cos (c+d x)}}{7 d e \left (a^2+a^2 \sin (c+d x)\right )}+\frac {\int \frac {1}{\sqrt {e \cos (c+d x)}} \, dx}{7 a^2}\\ &=-\frac {2 \sqrt {e \cos (c+d x)}}{7 d e (a+a \sin (c+d x))^2}-\frac {2 \sqrt {e \cos (c+d x)}}{7 d e \left (a^2+a^2 \sin (c+d x)\right )}+\frac {\sqrt {\cos (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{7 a^2 \sqrt {e \cos (c+d x)}}\\ &=\frac {2 \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{7 a^2 d \sqrt {e \cos (c+d x)}}-\frac {2 \sqrt {e \cos (c+d x)}}{7 d e (a+a \sin (c+d x))^2}-\frac {2 \sqrt {e \cos (c+d x)}}{7 d e \left (a^2+a^2 \sin (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 0.04, size = 64, normalized size = 0.55 \begin {gather*} -\frac {\sqrt {e \cos (c+d x)} \, _2F_1\left (\frac {1}{4},\frac {11}{4};\frac {5}{4};\frac {1}{2} (1-\sin (c+d x))\right )}{2^{3/4} a^2 d e \sqrt [4]{1+\sin (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[e*Cos[c + d*x]]*(a + a*Sin[c + d*x])^2),x]

[Out]

-((Sqrt[e*Cos[c + d*x]]*Hypergeometric2F1[1/4, 11/4, 5/4, (1 - Sin[c + d*x])/2])/(2^(3/4)*a^2*d*e*(1 + Sin[c +
 d*x])^(1/4)))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(371\) vs. \(2(128)=256\).
time = 6.60, size = 372, normalized size = 3.21

method result size
default \(-\frac {2 \left (8 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+6 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-8 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+6 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{7 \left (8 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) a^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) e +e}\, d}\) \(372\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sin(d*x+c))^2/(e*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/7/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)/a^2/sin(1/2*d*x+1/2*c)/(-2*sin(
1/2*d*x+1/2*c)^2*e+e)^(1/2)*(8*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2
*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^6-12*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ell
ipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^4+8*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)+6*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2
-8*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellip
ticF(cos(1/2*d*x+1/2*c),2^(1/2))+6*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-2*sin(1/2*d*x+1/2*c))/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(d*x+c))^2/(e*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

e^(-1/2)*integrate(1/((a*sin(d*x + c) + a)^2*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.12, size = 159, normalized size = 1.37 \begin {gather*} -\frac {{\left (i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} \sin \left (d x + c\right ) - 2 i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} \sin \left (d x + c\right ) + 2 i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 2 \, {\left (\sin \left (d x + c\right ) + 2\right )} \sqrt {\cos \left (d x + c\right )}}{7 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} e^{\frac {1}{2}} - 2 \, a^{2} d e^{\frac {1}{2}} \sin \left (d x + c\right ) - 2 \, a^{2} d e^{\frac {1}{2}}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(d*x+c))^2/(e*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-1/7*((I*sqrt(2)*cos(d*x + c)^2 - 2*I*sqrt(2)*sin(d*x + c) - 2*I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x +
 c) + I*sin(d*x + c)) + (-I*sqrt(2)*cos(d*x + c)^2 + 2*I*sqrt(2)*sin(d*x + c) + 2*I*sqrt(2))*weierstrassPInver
se(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 2*(sin(d*x + c) + 2)*sqrt(cos(d*x + c)))/(a^2*d*cos(d*x + c)^2*e^(1
/2) - 2*a^2*d*e^(1/2)*sin(d*x + c) - 2*a^2*d*e^(1/2))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {1}{\sqrt {e \cos {\left (c + d x \right )}} \sin ^{2}{\left (c + d x \right )} + 2 \sqrt {e \cos {\left (c + d x \right )}} \sin {\left (c + d x \right )} + \sqrt {e \cos {\left (c + d x \right )}}}\, dx}{a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(d*x+c))**2/(e*cos(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(e*cos(c + d*x))*sin(c + d*x)**2 + 2*sqrt(e*cos(c + d*x))*sin(c + d*x) + sqrt(e*cos(c + d*x)))
, x)/a**2

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(d*x+c))^2/(e*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(e^(-1/2)/((a*sin(d*x + c) + a)^2*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{\sqrt {e\,\cos \left (c+d\,x\right )}\,{\left (a+a\,\sin \left (c+d\,x\right )\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((e*cos(c + d*x))^(1/2)*(a + a*sin(c + d*x))^2),x)

[Out]

int(1/((e*cos(c + d*x))^(1/2)*(a + a*sin(c + d*x))^2), x)

________________________________________________________________________________________